
CS-453 - Project
(A short overview of)
Concurrent Programming in C/C++
Distributed Computing Laboratory

September 24, 2024

1

Back to CS101

2

// a single thread

int a = 0;
int b = 0;
print(a, b);

a = 1;
print(a, b);

b = 1;
print(a, b);

// a = 0, b = 0

// a = ?, b = ?

// a = ?, b = ?

// a = 0, b = 0

// a = 1, b = 0

// a = 1, b = 1

What if we have two threads?

3

// Global var.

int a = 0;
int b = 0;

// Thread A

a = 1; // write
b = 1; // write

// Thread B

int v = b; // read
if (v==1) {

print(a, v);
// a = 1, v = 1?
// a = 1, v = 0?
// a = 0, v = 1?
// a = 0, v = 0?

}

According to
common
sense /
“sequential
consistency”

What will
happen in
C/C++

What could
happen
according to
the C/C++
standards

Format your
disk

Who are the culprits?

4

1) C/C++ compilers can reorder instructions if it

doesn’t have any local side effects. 3) CPUs, depending on their consistency model, can

execute unrelated operations out-of-order.

When coding in C/C++, you should only care about

the C/C++ model, forget about hardware promises!

2) C/C++ standards say accessing a variable that is
being written by another thread without
synchronization (data race) is an Undefined Behavior,
it can lead to absolutely anything.

The main takeaway

5

 C/C++ do NOT ensure (without extra care)

that reads/writes

 are carried/observed

in program order

 by different threads

Use synchronization primitives when sharing data across threads to restore sequential consistency!

Example: let’s build a concurrent counter

6

#include <pthread.h>

#include <assert.h>

static int counter = 0;

void* thread(void* null) {

 counter = counter + 1; // race condition

}

int main() {

 pthread_t handlers[2];

 for (int i = 0; i < 2; i++)

 pthread_create(&handlers[i], NULL, thread, NULL);

 for (int i = 0; i < 2; i++)

 int res = pthread_join(handlers[i], NULL);

 assert(counter == 2);

}

Let’s try to fix this example by using synchronization primitives!

Sync primitive #1: Locks/Mutexes

7

● No two threads can hold a lock concurrently.

● Lock before accessing shared variable to prevent data races. (Don’t forget to unlock.)

● Prevent reordering via fences and ensure sequential consistency.

int main() {

 pthread_mutex_init(&mutex, NULL);
 pthread_t handlers[2];
 for (int i = 0; i < 2; i++)
 pthread_create(&handlers[i], NULL, thread, NULL);
 for (int i = 0; i < 2; i++)
 int res = pthread_join(handlers[i], NULL);
 assert(counter == 2);
 pthread_mutex_destroy(&mutex);
}

#include <pthread.h>

#include <assert.h>

pthread_mutex_t mutex;

static int counter = 0;

void* thread(void* null) {

 pthread_mutex_lock(&mutex);

 counter = counter + 1;

 pthread_mutex_unlock(&mutex);
}

Be careful about deadlocks! (e.g., always lock in the same order)

Sync primitive #2: Atomic variables (1/2)

8

void* bad_thread(void* null) {

 counter = counter + 1; // 2 ATOMIC OPERATIONS (LOAD and STORE) INSTEAD OF 1

}

int main() {

 pthread_t handlers[2];

 for (int i = 0; i < 2; i++)

 pthread_create(&handlers[i], NULL, thread, NULL);

 for (int i = 0; i < 2; i++)

 int res = pthread_join(handlers[i], NULL);

 assert(counter == 2);

}

● Safe concurrent access from multiple threads (no data races)

● Provide atomic operations (i.e., no other thread can observe partially-completed ops):

○ read (atomic_load) / write (atomic_store)

○ increment (atomic_fetch_add) / compare and swap (atomic_compare_exchange_strong)

● (By default,) prevent reorderings and offer sequential consistency.

#include <pthread.h>

#include <assert.h>

#include <stdatomic.h>

static atomic_int counter = 0;

void* thread(void* null) {

 atomic_fetch_add(&counter, 1);

}

Sync primitive #2: Atomic variables (2/2)

9

Atomic variables can be used to implement locks using the “Compare and Swap” operation

#include <stdatomic.h>

#define UNLOCKED 0
#define LOCKED 1

struct lock {
 atomic_bool state;
};

void init_lock(struct lock* lock) {

 lock->state = UNLOCKED;

}

void take_lock(struct lock* lock) {

 while (true) {

 bool expected = UNLOCKED;

 atomic_compare_exchange_strong(

&lock->state, &expected, LOCKED);

 if (expected == UNLOCKED) break;

 }

}

void release_lock(struct lock* lock) {

 lock->state = UNLOCKED;

}

● Busy waiting can seriously harm performance. Cooperate with your scheduler.
● 99.99% of the time: use the locks provided by your platform.

Sequential Consistency is a strict ordering

10

● Sequential Consistency prevents all reordering and can become a bottleneck.

● You can make your program more efficient by allowing some reordering.

● Very tricky to reason about + you probably won’t need it for this class. :)

● https://en.cppreference.com/w/c/atomic/memory_order

Takeaways

11

● Never access data while it is being modified by another thread.

● Option #1, atomic variables:

○ Few operations (read/write/f&a/c&s)

○ Multiple operations: not atomic! (but no data race)

● Option #2, locks:

○ Lock before accessing shared data, unlock after

○ Arbitrary logic

○ Be careful about deadlocks!

○ Do not use your own implementation!

● Sequential consistency is an overkill you can tolerate

