CS-453 - Project
(A short overview of)
Concurrent Programming in C/C++

Distributed Computing Laboratory

September 24, 2024

Back to CS101

// a single thread

int a = 0;

int b = 0;

print(a, b); // a
a = 1;

print(a, b); // a
b = 1;

print(a, b); // a

What if we have two threads?

// Global var.

int a
int b

:O;
:O;

// Thread A

a
b

1; // write
1; // write

// Thread B

(OO

b; // read
if (v==1) {
print(a, v);

\%

V
\Y
\Y

According to What will

common happen in
sense / C/C++
“sequential

consistency”

What could
happen
according to
the C/C++
standards

Format your
disk

Who are the culprits?

1) C/C++ compilers can reorder instructions if it

doesn’t have any local side effects 3) CPUs, depending on their consistency model, can

execute unrelated operations out-of-order.
a =1;
b=1;

g

1;
= 1-

H

p o

2) C/C++ standards say accessing a variable that is When coding in C/C++, you should only care about
being written by another thread without

synchronization (data race) is an Undefined Behavior, the C/C++ model, forget about hardware promises!
it can lead to absolutely anything.

The main takeaway

C/C++ do NOT ensure (without extra care)
that reads/writes
are carried/observed
in program order

by different threads

Use synchronization primitives when sharing data across threads to restore sequential consistency!

Example: let's build a concurrent counter

#include <pthread.h> int main() {

#include <assert.h> pthread_t handlers[2];
for (int i = 0; 1 < 2; i++)

static int counter = 0; pthread create(&handlers[i], NULL, thread, NULL);
for (int i = 0; i < 2; i++)

void* thread(void* null) { int res = pthread join(handlers[i], NULL);

counter = counter + 1; // race condition assert (counter == 2);

Let’s try to fix this example by using synchronization primitives!

Sync primitive #1: Locks/Mutexes

e Notwo threads can hold a lock concurrently.
e Lock before accessing shared variable to prevent data races. (Don’t forget to unlock.)
e Preventreordering via fences and ensure sequential consistency.

#include <pthread.h>

int main() {
#include <assert.h>

pthread mutex_ init (&mutex, NULL) ;
pthread t handlers[2];
for (int i = 0; 1 < 2; i++)
static int counter = 0; pthread_create (&¢handlers[i], NULL, thread, NULL);
for (int i = 0; 1 < 2; i++)
int res = pthread join(handlers[i], NULL);
assert (counter == 2);

pthread mutex t mutex;

void* thread(void* null) {
pthread mutex_lock (&mutex) ; pthread mutex destroy (&mutex) ;
counter = counter + 1; }

pthread mutex unlock (&mutex) ;

}
Be careful about deadlocks! (e.g., always lock in the same order)

Sync primitive #2: Atomic variables (1/2)

e Safe concurrent access from multiple threads (no data races)
e Provide atomic operations (i.e., no other thread can observe partially-completed ops):

o read (atomic_load) / write (atomic_store)

o increment (atomic_fetch_add) / compare and swap (atomic_compare_exchange_strong)
e (Bydefault,) prevent reorderings and offer sequential consistency.

#include <pthread.h>

#include <assert.h> . .
int main() {
#include <stdatomic.h>
pthread_t handlers[2];

for (int i = 0; i1 < 2; i++)
static atomic int counter = 0; .
- pthread create(&handlers[i], NULL, thread, NULL);
for (int i = 0; i < 2; i++)
void* thread(void* null) {

int res = pthread join(handlers[i], NULL);
atomic_fetch add(&counter, 1);

}
void* bad thread(void* null) {

assert (counter == 2);

}

counter = counter + 1; // 2 ATOMIC OPERATIONS (LOAD and STORE) INSTEAD OF 1

Sync primitive #2: Atomic variables (2/2)

Atomic variables can be used to implement locks using the “Compare and Swap” operation

#include <stdatomic.h>

#define UNLOCKED 0
#define LOCKED 1

struct lock {
atomic_bool state;

};

void init lock(struct lock* lock) {

lock->state = UNLOCKED;

void take_lock(struct lock* lock) {
while (true) {
bool expected = UNLOCKED;
atomic_compare_ exchange_strong(
&lock->state, &expected, LOCKED) ;
if (expected == UNLOCKED) break;

void release_ lock(struct lock* lock) {

lock->state = UNLOCKED;

Busy waiting can seriously harm performance. Cooperate with your scheduler.
99.99% of the time: use the locks provided by your platform.

Sequential Consistency is a strict ordering

consume acquire seq_cst
relaxed release acq_rel
| — | : ——
Least constraining Most constraining

read

write

——————— atomic_thread_fence(memory_order_seq_cst);
read

—— Ccotal ordeD

Sequential Consistency prevents all reordering and can become a bottleneck.
You can make your program more efficient by allowing some reordering.
Very tricky to reason about + you probably won’t need it for this class. :)
https://en.cppreference.com/w/c/atomic/memory_order

10

Takeaways

e Never access data while it is being modified by another thread.

e Option#1, atomic variables:

o Few operations (read/write/f&a/c&s)

o Multiple operations: not atomic! (but no data race)
e Option#2, locks:

o Lock before accessing shared data, unlock after

o Arbitrary logic

o Be careful about deadlocks!

o Do not use your own implementation!
e Sequential consistency is an overkill you can tolerate

11

